

Exome Sequencing to Identify Variants Associated with Moebius Syndrome

Rachel L. Goldfeder¹, Peter S. Chines¹, Lori Bonnycastle¹, Amy Swift¹, Narisu Narisu¹, Irini Manoli², and Francis S. Collins¹

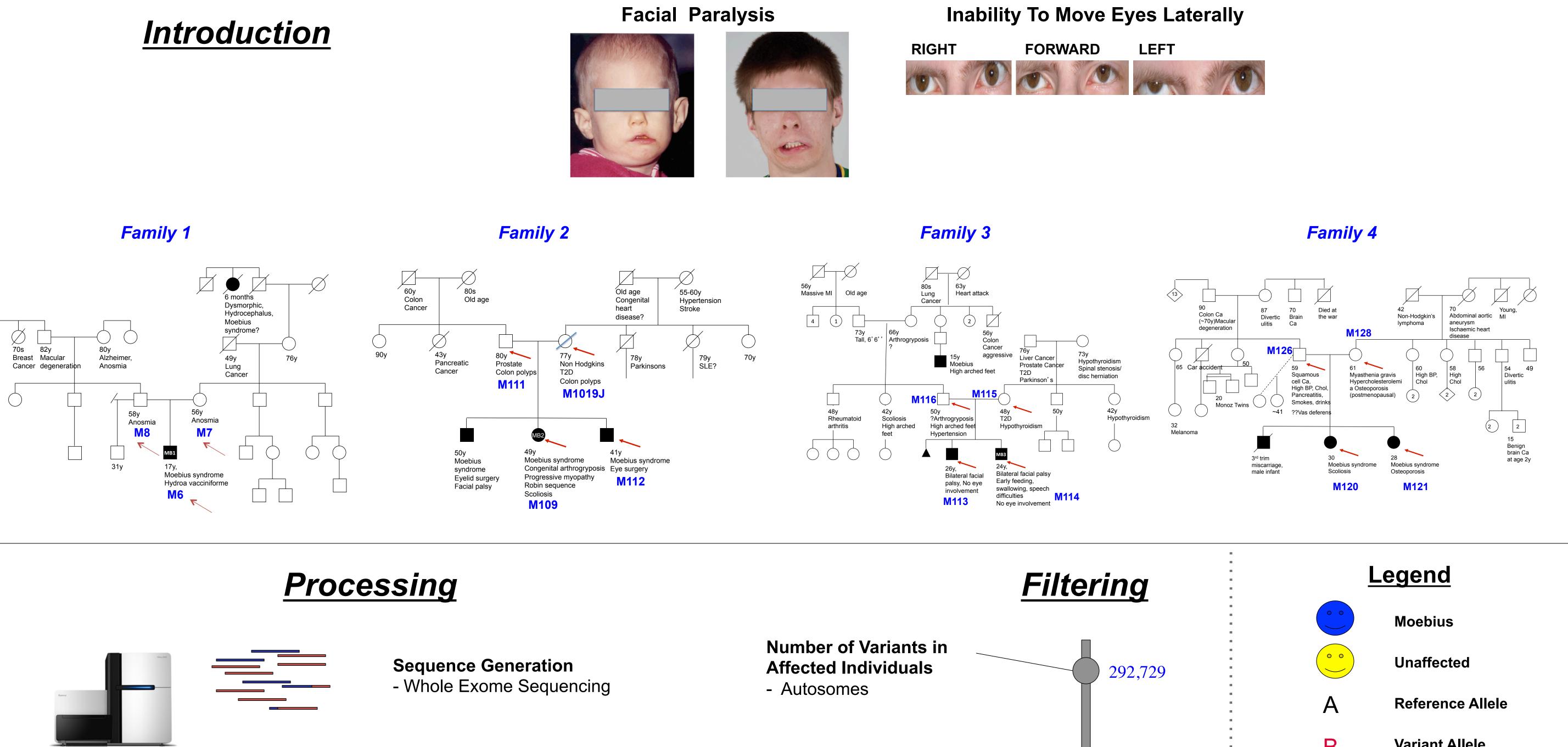
¹Molecular Genetics Section, Genome Technology Branch, NHGRI, Bethesda, MD 20892 ²Organic Acid Research Section, Genetics and Molecular Biology Branch, NHGRI, Bethesda, MD 20892

Align Sequence Reads

- Novoalign

Call Genotypes

Quality Control Measurements


- MPG

- hg19

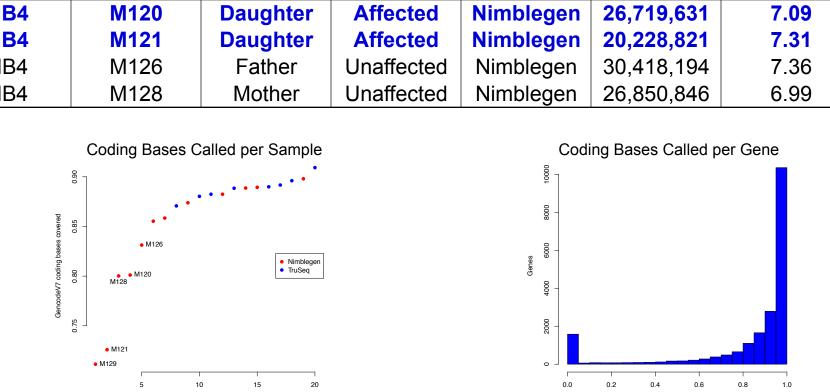
Abstract

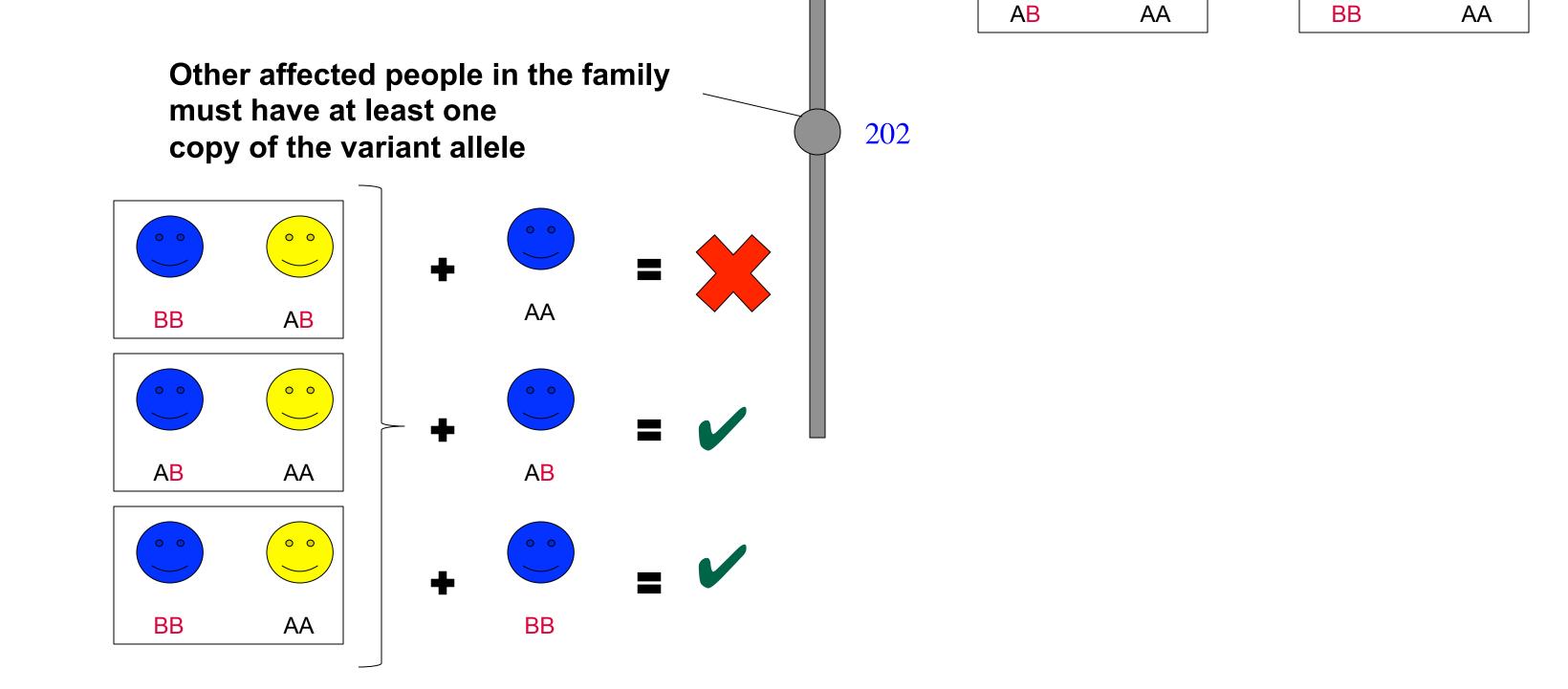
Moebius Syndrome is a rare, congenital neurological condition. The primary symptom is a lack of facial expressions and lateral eye movements due to paralysis of facial muscles. Most cases are sporadic; the disease is believed to result from genetic and prenatal environmental factors. Our group is using whole-exome DNA sequencing to identify genetic variations that are associated with the disease. We sequenced the DNA of seven affected individuals and their parents (and siblings, where available).

Preliminary data from exome sequencing has identified over 290,000 variants in the affected individuals. We have implemented filters based on data quality and predicted function to filter and prioritize variants. We have found several interesting variants that we plan to validate using mass spectrometry and eventually follow up with functional studies.

Deleterious variants: - Frameshifts Nonsynonymous - Stop - Splice-site interruption Rare in the Population 1,586 - 1000G Whole Genome Sequencing phase 1 - NHLBI Exome Sequencing Project - Recessive: Allele Frequency < 0.5% - Dominant: Allele Frequency < 0.0025% No unaffected person has 2 copies of variant allele 0 0 Unaffected person's genotype does not match affected person's genotype 0 0

Family	ID	Pedigree	Status	Exome Capture	Number of Reads	Percent Duplicates	Coding Bases with Confident Genotype Calls
MB1	M6	Son	Affected	Nimblegen	54,483,705	6.81	31,570,288
MB1	M7	Mother	Unaffected	Nimblegen	56,457,736	10.92	31,043,370
MB1	M8	Father	Unaffected	Nimblegen	56,305,891	6.42	31,350,519
MB2	M109	Daughter	Affected	TruSeq	89,882,299	8.45	31,273,435
MB2	M111	Father	Unaffected	TruSeq	189,991,208	28.3	32,301,599
MB2	M112	Son	Affected	TruSeq	105,298,661	31.22	31,349,399
MB2	M1019J	Mother	Unaffected	TruSeq	99,493,405	39.44	30,931,287
MB3	M113	Son	Affected	TruSeq	115,305,493	27.66	31,613,741
MB3	M114	Son	Affected	TruSeq	145,212,828	32.47	31,832,480
MB3	M115	Mother	Unaffected	TruSeq	117,996,745	31.49	31,563,831
MB3	M116	Father	Unaffected	TruSeq	124,040,031	31.75	31,678,005
MB4	M120	Daughter	Affected	Nimblegen	26,719,631	7.09	28,459,431
MB4	M121	Daughter	Affected	Nimblegen	20,228,821	7.31	25,788,919
MB4	M126	Father	Unaffected	Nimblegen	30,418,194	7.36	29,532,103
MB4	M128	Mother	Unaffected	Nimblegen	26,850,846	6.99	28,426,448


AT 0 Difference between most probable


200 bases | 107944650l 97944700l 97944750l 97944800l 97944850l 97944900l 97944900l 97945000l 97945000l 97945000l 97945000l 97945100l 97945100l 97945100l

Bayesian Genotype Calling:

Most Probable Genotype

P(Genotype|Data)

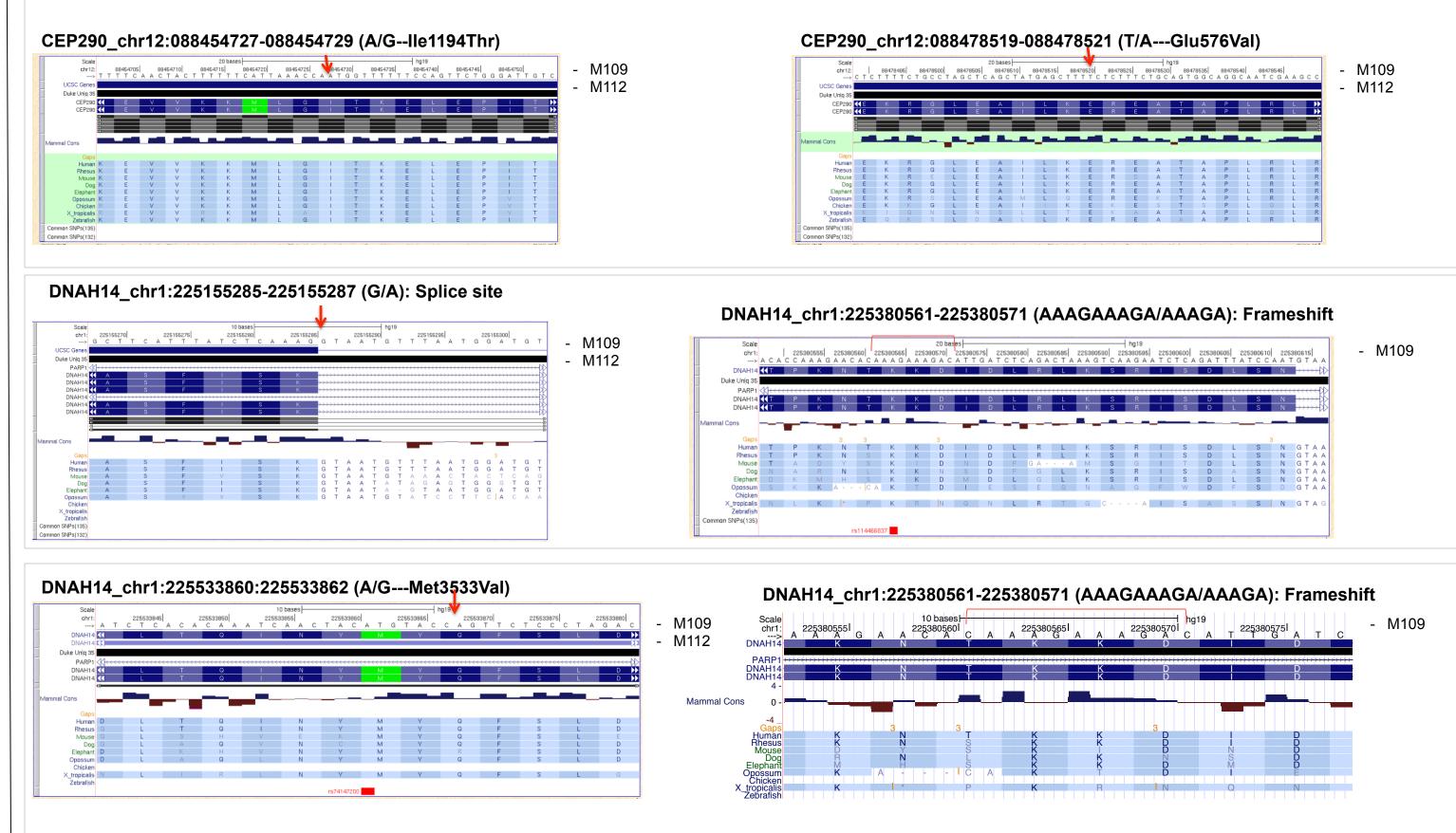
1,229

AA

00

Molecular Genetics Section

Results


Single Variants

Affected Sample(s)	Model	Gene ID	Ref allele	Var allele	AA Change	Туре	Freq	Gene Decription	
M6	Recessive	AKAP3	G	Α	S700F	NonSyn	0	A-kinase anchor protein 3	
		ANAFJ	Α	G	S700P	NonSyn	0	A-kiriase afficitor protein 3	
	Dominant (NMI)	DNAH17	G	А	R711W	NonSyn	0	Dynein heavy chain 17, axonemal	
	Dominant (NMI)	ZFP64	AAAAAAAAA	AAAAAAAAAA		Frameshift	0	Zinc finger protein 64	
M109, M112	Recessive	PRICKLE4	СТ	СТТСТ		Frameshift	0	Over-expressed breast tumor protein	
M113, M114	Recessive	TAC C1	TGACTG	TG		Frameshift	0	Transforming, acidic coiled-coil containing	
M113	Recessive	HNF1A	TCATTCATTCATT CAT	TCATTCATTC ATTCATTCAT		Frameshift	0	Transcription factor 1, hepatic	
M121, M120	Recessive	KRTAP4-6	G	Α	S202F	NonSyn	0.00366	Keratin Associated Protein 4-6	

Compound heterozygotes

Affected Sample(s)	Gene	Freq.A	Freq.B	Type.A	Type.B	AA Change.A	AA Change.B	Gene Description
M6	SLC7A2	0.02542	0.00014	NonSyn	NonSyn	V545M	R517W	Solute carrier family 7, member 2
M109, M112	CEP290 (CPR8)	0.00634	0	NonSyn	NonSyn	I1194T	E576V	Centrosomal protein 290kDa;Homo sapiens monoclonal antibody 3H11 antigen mRNA, complete cds.
M109	DNAH14	0.00229	0	Splicing	Frameshift			Dynein, axonemal, heavy polypeptide 14 isoform; Dynein heavy chain 14, axonemal
		0.01315	0	NonSyn	Frameshift	M3533V		(Axonemal beta dynein heavy chain 14) (Ciliary

Example: Compound heterozygotes in M109 and M112

Future Directions

- Call genotypes with Genome Analysis ToolKit
- Validate discrepancies between GATK and MPG Use MODY samples as additional controls
- Call and filter non-autosomes (chrX, chrY, chrM)
- Better annotation:
 - Nearby/overlapping variants
 - Predict effect of nonsynonymous variants
- Validation of variants
- Functional follow-up

Acknowledgements

- **Collins Lab**
- Bill Gahl Lab
- Larry Brody
- NIH Intramural Sequencing Center
- Alice Young
- Jim Mullikin

Jamie Teer

Nancy Hansen

Mullikin Lab

- **Mount Sinai School of Medicine**
 - Ethylin Jabs
 - Bryn Webb
- IT Support **Moebius Syndrome Foundation** Jesse Becker

